Ex 7: Comparison of F-test and mutual information
這個範例是解釋單變量選擇特徵的兩個方法,F-test statistics以及mutual information。單變量特徵選擇可以算是選擇特徵的預處理,用以判斷適當的特徵選擇方式。
此範例假設了三個特徵變數x1, x2, x3分布在0與1之間,並且依照下列公式模擬預測目標: y = x1+ +sin(6 pi x2)+0.1 * N(0,1) 第三個特徵變量與預測目標無相關
下面的函式畫出了y與每個x_i之間的相依性,並且把F-test statistics以及mutual information的計算分數算出來,可以看到不同的變數影響方式在兩種方法會有不同的結果。
F-test 的結果只會關注線性相關的變數影響,該方法選擇x1作為最具有特徵影響力的變量。另一方面,mutual information方法可以選出經過不同函式呈現的目標變數特徵,而他選擇了X2作為最具有影響力的特徵,我們在直覺上認為能找出經過三角函數轉換過的特徵變數,更符合在這個例子中目標變數的影響方式。而兩種方法都準確的判斷x3與目標變數無相關性。
1
import numpy as np
2
import matplotlib.pyplot as plt
3
from sklearn.feature_selection import f_regression, mutual_info_regression
4
5
np.random.seed(0)
6
X = np.random.rand(1000, 3)
7
y = X[:, 0] + np.sin(6 * np.pi * X[:, 1]) + 0.1 * np.random.randn(1000)
8
9
f_test, _ = f_regression(X, y)
10
f_test /= np.max(f_test)
11
12
mi = mutual_info_regression(X, y)
13
mi /= np.max(mi)
14
15
plt.figure(figsize=(15, 5))
16
for i in range(3):
17
plt.subplot(1, 3, i + 1)
18
plt.scatter(X[:, i], y)
19
plt.xlabel("$x_{}quot;.format(i + 1), fontsize=14)
20
if i == 0:
21
plt.ylabel("$yquot;, fontsize=14)
22
plt.title("F-test={:.2f}, MI={:.2f}".format(f_test[i], mi[i]),
23
fontsize=16)
24
plt.show()
Copied!
Copy link