EX 1: Feature_agglomeration.md

https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_agglomeration.html#sphx-glr-auto-examples-cluster-plot-digits-agglomeration-py

此範例是用FeatureAgglomeration來做特徵聚集

  1. 利用 sklearn.datasets.load_digits() 來讀取內建資料庫

  2. 利用 FeatureAgglomeration : 將相似特徵聚集並降維,來減少特徵數量,避免特徵過多的問題

(一)引入函式庫

引入函式如下:

  1. numpy : 產生陣列數值

  2. matplotlib.pyplot : 用來繪製影像

  3. sklearn import datasets, cluster : datasets : 用來匯入內建之手寫數字資料庫 ; cluster : 其內收集非監督clustering演算法

  4. sklearn.feature_extraction.image import grid_to_graph : 定義資料的結構

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, cluster
from sklearn.feature_extraction.image import grid_to_graph
# The digits dataset
digits = datasets.load_digits()
images = digits.images

使用 datasets.load_digits() 將資料存入, digits 為一個dict型別資料,我們可以用以下指令來看一下資料的內容。

for key,value in digits.items() :
try:
print (key,value.shape)
except:
print (key)

顯示

說明

('images', (1797L, 8L, 8L))

共有 1797 張影像,影像大小為 8x8

('data', (1797L, 64L))

data 則是將8x8的矩陣攤平成64個元素之一維向量

('target_names', (10L,))

說明10種分類之對應 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

DESCR

資料之描述

('target', (1797L,))

記錄1797張影像各自代表那一個數字

X = np.reshape(images, (len(images), -1))

將1797x8x8的圖片拉長,變成1797x64

(二)特徵聚集

connectivity = grid_to_graph(*images[0].shape)
agglo = cluster.FeatureAgglomeration(connectivity=connectivity,
n_clusters=32)
agglo.fit(X)

grid_to_graph : 做出像素連接的矩陣 FeatureAgglomeration : 將相似特徵聚集並降維,來減少特徵數量

X_reduced = agglo.transform(X)
X_restored = agglo.inverse_transform(X_reduced)

transform : 根據上面 n_clusters 的值做轉換,得出[n_samples, n_features_new]新的特徵值 inverse_transform : 將其轉換回原本的特徵數(64)對應的特徵值

images_restored = np.reshape(X_restored, images.shape)
plt.figure(1, figsize=(4, 3.5))
plt.clf()

plt.clf() : 保留figure但是清除內容,可以讓這figure重複使用

最後用下面程式碼將圖秀出來

plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91)
for i in range(4):
plt.subplot(3, 4, i + 1)
plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest')
plt.xticks(())
plt.yticks(())
if i == 1:
plt.title('Original data')
plt.subplot(3, 4, 4 + i + 1)
plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16,
interpolation='nearest')
if i == 1:
plt.title('Agglomerated data')
plt.xticks(())
plt.yticks(())
plt.subplot(3, 4, 10)
plt.imshow(np.reshape(agglo.labels_, images[0].shape),
interpolation='nearest', cmap=plt.cm.nipy_spectral)
plt.xticks(())
plt.yticks(())
plt.title('Labels')
plt.show()

(三)完整程式碼

Python source code:plot_digits_agglomeration.py

https://scikit-learn.org/stable/_downloads/plot_digits_agglomeration.py

print(__doc__)
# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, cluster
from sklearn.feature_extraction.image import grid_to_graph
digits = datasets.load_digits()
images = digits.images
X = np.reshape(images, (len(images), -1))
connectivity = grid_to_graph(*images[0].shape)
agglo = cluster.FeatureAgglomeration(connectivity=connectivity,
n_clusters=32)
agglo.fit(X)
X_reduced = agglo.transform(X)
X_restored = agglo.inverse_transform(X_reduced)
images_restored = np.reshape(X_restored, images.shape)
plt.figure(1, figsize=(4, 3.5))
plt.clf()
plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91)
for i in range(4):
plt.subplot(3, 4, i + 1)
plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest')
plt.xticks(())
plt.yticks(())
if i == 1:
plt.title('Original data')
plt.subplot(3, 4, 4 + i + 1)
plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16,
interpolation='nearest')
if i == 1:
plt.title('Agglomerated data')
plt.xticks(())
plt.yticks(())
plt.subplot(3, 4, 10)
plt.imshow(np.reshape(agglo.labels_, images[0].shape),
interpolation='nearest', cmap=plt.cm.nipy_spectral)
plt.xticks(())
plt.yticks(())
plt.title('Labels')
plt.show()